Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2
Перепишем в виде .
Этап 1.3
По правилу суммы производная по имеет вид .
Этап 1.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.5
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.6
Добавим и .
Этап 1.7
Подставим вместо .
Этап 2
Перепишем левую часть как результат дифференцирования произведения.
Этап 3
Зададим интеграл на каждой стороне.
Этап 4
Проинтегрируем левую часть.
Этап 5
Этап 5.1
Интеграл по имеет вид .
Этап 5.2
Добавим и .
Этап 6
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Этап 6.2.1
Сократим общий множитель .
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .