Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Разделим и упростим.
Этап 1.1.1
Разобьем дробь на две дроби.
Этап 1.1.2
Упростим каждый член.
Этап 1.1.2.1
Сократим общий множитель .
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Перепишем это выражение.
Этап 1.1.2.2
Сократим общий множитель и .
Этап 1.1.2.2.1
Вынесем множитель из .
Этап 1.1.2.2.2
Сократим общие множители.
Этап 1.1.2.2.2.1
Вынесем множитель из .
Этап 1.1.2.2.2.2
Сократим общий множитель.
Этап 1.1.2.2.2.3
Перепишем это выражение.
Этап 1.2
Вынесем множитель из .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Изменим порядок и .
Этап 1.3
Вынесем множитель из .
Этап 1.3.1
Вынесем множитель из .
Этап 1.3.2
Изменим порядок и .
Этап 1.4
Вынесем множитель из .
Этап 1.4.1
Вынесем множитель из .
Этап 1.4.2
Изменим порядок и .
Этап 2
Пусть . Подставим вместо .
Этап 3
Решим относительно .
Этап 4
Применим правило умножения, чтобы найти производную по .
Этап 5
Подставим вместо .
Этап 6
Этап 6.1
Разделим переменные.
Этап 6.1.1
Решим относительно .
Этап 6.1.1.1
Упростим каждый член.
Этап 6.1.1.1.1
Умножим на , сложив экспоненты.
Этап 6.1.1.1.1.1
Перенесем .
Этап 6.1.1.1.1.2
Умножим на .
Этап 6.1.1.1.2
Умножим на , сложив экспоненты.
Этап 6.1.1.1.2.1
Перенесем .
Этап 6.1.1.1.2.2
Умножим на .
Этап 6.1.1.1.2.2.1
Возведем в степень .
Этап 6.1.1.1.2.2.2
Применим правило степени для объединения показателей.
Этап 6.1.1.1.2.3
Добавим и .
Этап 6.1.1.1.3
Объединим и .
Этап 6.1.1.2
Перенесем все члены без в правую часть уравнения.
Этап 6.1.1.2.1
Вычтем из обеих частей уравнения.
Этап 6.1.1.2.2
Объединим противоположные члены в .
Этап 6.1.1.2.2.1
Вычтем из .
Этап 6.1.1.2.2.2
Добавим и .
Этап 6.1.1.3
Разделим каждый член на и упростим.
Этап 6.1.1.3.1
Разделим каждый член на .
Этап 6.1.1.3.2
Упростим левую часть.
Этап 6.1.1.3.2.1
Сократим общий множитель .
Этап 6.1.1.3.2.1.1
Сократим общий множитель.
Этап 6.1.1.3.2.1.2
Разделим на .
Этап 6.1.1.3.3
Упростим правую часть.
Этап 6.1.1.3.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 6.1.1.3.3.2
Объединим.
Этап 6.1.1.3.3.3
Умножим на .
Этап 6.1.2
Умножим обе части на .
Этап 6.1.3
Упростим.
Этап 6.1.3.1
Объединим.
Этап 6.1.3.2
Сократим общий множитель .
Этап 6.1.3.2.1
Сократим общий множитель.
Этап 6.1.3.2.2
Перепишем это выражение.
Этап 6.1.4
Перепишем уравнение.
Этап 6.2
Проинтегрируем обе части.
Этап 6.2.1
Зададим интеграл на каждой стороне.
Этап 6.2.2
Проинтегрируем левую часть.
Этап 6.2.2.1
Применим основные правила для показателей степени.
Этап 6.2.2.1.1
Вынесем из знаменателя, возведя в степень.
Этап 6.2.2.1.2
Перемножим экспоненты в .
Этап 6.2.2.1.2.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2.1.2.2
Умножим на .
Этап 6.2.2.2
По правилу степени интеграл по имеет вид .
Этап 6.2.2.3
Упростим ответ.
Этап 6.2.2.3.1
Перепишем в виде .
Этап 6.2.2.3.2
Упростим.
Этап 6.2.2.3.2.1
Умножим на .
Этап 6.2.2.3.2.2
Перенесем влево от .
Этап 6.2.3
Проинтегрируем правую часть.
Этап 6.2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.2.3.2
Интеграл по имеет вид .
Этап 6.2.3.3
Упростим.
Этап 6.2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 6.3
Решим относительно .
Этап 6.3.1
Упростим путем переноса под логарифм.
Этап 6.3.2
Найдем НОК знаменателей членов уравнения.
Этап 6.3.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 6.3.2.2
НОК единицы и любого выражения есть это выражение.
Этап 6.3.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 6.3.3.1
Умножим каждый член на .
Этап 6.3.3.2
Упростим левую часть.
Этап 6.3.3.2.1
Сократим общий множитель .
Этап 6.3.3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 6.3.3.2.1.2
Сократим общий множитель.
Этап 6.3.3.2.1.3
Перепишем это выражение.
Этап 6.3.3.3
Упростим правую часть.
Этап 6.3.3.3.1
Упростим каждый член.
Этап 6.3.3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.3.3.1.2
Упростим путем переноса под логарифм.
Этап 6.3.3.3.1.3
Перемножим экспоненты в .
Этап 6.3.3.3.1.3.1
Применим правило степени и перемножим показатели, .
Этап 6.3.3.3.1.3.2
Сократим общий множитель .
Этап 6.3.3.3.1.3.2.1
Сократим общий множитель.
Этап 6.3.3.3.1.3.2.2
Перепишем это выражение.
Этап 6.3.3.3.1.4
Упростим.
Этап 6.3.3.3.1.5
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.3.3.2
Изменим порядок множителей в .
Этап 6.3.4
Решим уравнение.
Этап 6.3.4.1
Перепишем уравнение в виде .
Этап 6.3.4.2
Вынесем множитель из .
Этап 6.3.4.2.1
Вынесем множитель из .
Этап 6.3.4.2.2
Вынесем множитель из .
Этап 6.3.4.3
Разделим каждый член на и упростим.
Этап 6.3.4.3.1
Разделим каждый член на .
Этап 6.3.4.3.2
Упростим левую часть.
Этап 6.3.4.3.2.1
Сократим общий множитель .
Этап 6.3.4.3.2.1.1
Сократим общий множитель.
Этап 6.3.4.3.2.1.2
Разделим на .
Этап 6.3.4.3.3
Упростим правую часть.
Этап 6.3.4.3.3.1
Вынесем знак минуса перед дробью.
Этап 6.3.4.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.3.4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.3.4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.3.4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.3.4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.4
Упростим постоянную интегрирования.
Этап 7
Подставим вместо .
Этап 8
Этап 8.1
Перепишем.
Этап 8.2
Умножим обе части на .
Этап 8.3
Упростим левую часть.
Этап 8.3.1
Сократим общий множитель .
Этап 8.3.1.1
Сократим общий множитель.
Этап 8.3.1.2
Перепишем это выражение.
Этап 9
Этап 9.1
Перепишем.
Этап 9.2
Умножим обе части на .
Этап 9.3
Упростим левую часть.
Этап 9.3.1
Сократим общий множитель .
Этап 9.3.1.1
Сократим общий множитель.
Этап 9.3.1.2
Перепишем это выражение.
Этап 10
Перечислим решения.