Математический анализ Примеры

Решите Дифференциальное Уравнение (2x^2y+2y+5)dx+(2x^3+2x)dy=0
Этап 1
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем по .
Этап 1.2
По правилу суммы производная по имеет вид .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.3
Умножим на .
Этап 1.5
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.5.2
Добавим и .
Этап 2
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем по .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.3
Умножим на .
Этап 3
Проверим, что .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо , а вместо .
Этап 3.2
Так как левая часть не равна правой, уравнение не является тождеством.
не является тождеством.
не является тождеством.
Этап 4
Найдем коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим вместо .
Этап 4.2
Подставим вместо .
Этап 4.3
Подставим вместо .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Применим свойство дистрибутивности.
Этап 4.3.2.2
Умножим на .
Этап 4.3.2.3
Умножим на .
Этап 4.3.2.4
Вычтем из .
Этап 4.3.2.5
Вычтем из .
Этап 4.3.2.6
Добавим и .
Этап 4.3.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Вынесем множитель из .
Этап 4.3.3.2
Вынесем множитель из .
Этап 4.3.3.3
Вынесем множитель из .
Этап 4.3.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Вынесем множитель из .
Этап 4.3.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.3.4.2.1
Вынесем множитель из .
Этап 4.3.4.2.2
Сократим общий множитель.
Этап 4.3.4.2.3
Перепишем это выражение.
Этап 4.3.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.3.5.1
Вынесем множитель из .
Этап 4.3.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.3.5.2.1
Сократим общий множитель.
Этап 4.3.5.2.2
Перепишем это выражение.
Этап 4.3.6
Вынесем знак минуса перед дробью.
Этап 4.4
Найдем коэффициент интегрирования .
Этап 5
Найдем интеграл .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.3
Умножим на .
Этап 5.4
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 5.4.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 5.4.1.1
Дифференцируем .
Этап 5.4.1.2
По правилу суммы производная по имеет вид .
Этап 5.4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.4.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 5.4.1.5
Добавим и .
Этап 5.4.2
Переформулируем задачу с помощью и .
Этап 5.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Умножим на .
Этап 5.5.2
Перенесем влево от .
Этап 5.6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.7.1
Объединим и .
Этап 5.7.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.7.2.1
Вынесем множитель из .
Этап 5.7.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.7.2.2.1
Вынесем множитель из .
Этап 5.7.2.2.2
Сократим общий множитель.
Этап 5.7.2.2.3
Перепишем это выражение.
Этап 5.7.2.2.4
Разделим на .
Этап 5.8
Интеграл по имеет вид .
Этап 5.9
Упростим.
Этап 5.10
Заменим все вхождения на .
Этап 5.11
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.11.1
Упростим путем переноса под логарифм.
Этап 5.11.2
Экспонента и логарифм являются обратными функциями.
Этап 5.11.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 6
Умножим обе стороны на коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Умножим на .
Этап 6.3
Умножим на .
Этап 6.4
Умножим на .
Этап 6.5
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Вынесем множитель из .
Этап 6.5.2
Вынесем множитель из .
Этап 6.5.3
Вынесем множитель из .
Этап 6.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.6.1
Сократим общий множитель.
Этап 6.6.2
Разделим на .
Этап 7
Приравняем к интегралу .
Этап 8
Проинтегрируем , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 8.1
Применим правило дифференцирования постоянных функций.
Этап 9
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 10
Зададим .
Этап 11
Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1
Продифференцируем по .
Этап 11.2
По правилу суммы производная по имеет вид .
Этап 11.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 11.3.1
Поскольку является константой относительно , производная по равна .
Этап 11.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.3.3
Умножим на .
Этап 11.4
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 11.5
Изменим порядок членов.
Этап 12
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 12.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Вычтем из обеих частей уравнения.
Этап 12.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.1.2.1
Разобьем дробь на две дроби.
Этап 12.1.2.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.1.2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 12.1.2.2.1.1
Вынесем множитель из .
Этап 12.1.2.2.1.2
Вынесем множитель из .
Этап 12.1.2.2.1.3
Вынесем множитель из .
Этап 12.1.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 12.1.2.2.2.1
Сократим общий множитель.
Этап 12.1.2.2.2.2
Разделим на .
Этап 12.1.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 12.1.3.1
Вычтем из .
Этап 12.1.3.2
Добавим и .
Этап 13
Найдем первообразную , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 13.1
Проинтегрируем обе части .
Этап 13.2
Найдем значение .
Этап 13.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 13.4
Изменим порядок и .
Этап 13.5
Перепишем в виде .
Этап 13.6
Интеграл по имеет вид .
Этап 13.7
Упростим.
Этап 14
Подставим выражение для в .