Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.1.1
Пусть . Найдем .
Этап 2.3.1.1.1
Дифференцируем .
Этап 2.3.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.3.1.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.1.5
Добавим и .
Этап 2.3.1.2
Переформулируем задачу с помощью и .
Этап 2.3.2
Упростим.
Этап 2.3.2.1
Умножим на .
Этап 2.3.2.2
Перенесем влево от .
Этап 2.3.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Интеграл по имеет вид .
Этап 2.3.5
Упростим.
Этап 2.3.6
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .