Математический анализ Примеры

Решите Дифференциальное Уравнение a^2dx=x квадратный корень из x^2a^2dy
Этап 1
Перепишем уравнение.
Этап 2
Умножим обе части на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Сократим общий множитель.
Этап 3.1.2
Перепишем это выражение.
Этап 3.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Перепишем в виде .
Этап 3.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.2.3
Объединим показатели степеней.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Возведем в степень .
Этап 3.2.3.2
Возведем в степень .
Этап 3.2.3.3
Применим правило степени для объединения показателей.
Этап 3.2.3.4
Добавим и .
Этап 3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вынесем множитель из .
Этап 3.3.2
Вынесем множитель из .
Этап 3.3.3
Сократим общий множитель.
Этап 3.3.4
Перепишем это выражение.
Этап 3.4
Объединим и .
Этап 4
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Применим правило дифференцирования постоянных функций.
Этап 4.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Вынесем из знаменателя, возведя в степень.
Этап 4.3.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Применим правило степени и перемножим показатели, .
Этап 4.3.2.2.2
Умножим на .
Этап 4.3.3
По правилу степени интеграл по имеет вид .
Этап 4.3.4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Перепишем в виде .
Этап 4.3.4.2
Объединим и .
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .