Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Решим относительно .
Этап 1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.2
Разделим каждый член на и упростим.
Этап 1.1.2.1
Разделим каждый член на .
Этап 1.1.2.2
Упростим левую часть.
Этап 1.1.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.1.2.2.2
Сократим общий множитель .
Этап 1.1.2.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2.2
Разделим на .
Этап 1.1.2.3
Упростим правую часть.
Этап 1.1.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2
Умножим обе части на .
Этап 1.3
Сократим общий множитель .
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 1.4
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Интеграл по имеет вид .
Этап 2.3
Интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 3.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 3.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3.5
Решим относительно .
Этап 3.5.1
Перепишем уравнение в виде .
Этап 3.5.2
Умножим обе части на .
Этап 3.5.3
Упростим левую часть.
Этап 3.5.3.1
Сократим общий множитель .
Этап 3.5.3.1.1
Сократим общий множитель.
Этап 3.5.3.1.2
Перепишем это выражение.
Этап 3.5.4
Решим относительно .
Этап 3.5.4.1
Изменим порядок множителей в .
Этап 3.5.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 4
Этап 4.1
Упростим постоянную интегрирования.
Этап 4.2
Объединим константы с плюсом или минусом.