Математический анализ Примеры

Решите Дифференциальное Уравнение x^2y(dy)/(dx)=e^y
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Перепишем это выражение.
Этап 1.1.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2
Разделим на .
Этап 1.2
Перегруппируем множители.
Этап 1.3
Умножим обе части на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Объединим.
Этап 1.4.2
Объединим.
Этап 1.4.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Сократим общий множитель.
Этап 1.4.3.2
Перепишем это выражение.
Этап 1.4.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.4.1
Сократим общий множитель.
Этап 1.4.4.2
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Поменяем знак экспоненты и вынесем ее из знаменателя.
Этап 2.2.1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.2
Перенесем влево от .
Этап 2.2.1.2.3
Перепишем в виде .
Этап 2.2.2
Проинтегрируем по частям, используя формулу , где и .
Этап 2.2.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Умножим на .
Этап 2.2.4.2
Умножим на .
Этап 2.2.5
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.5.1.1
Дифференцируем .
Этап 2.2.5.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.2.5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.5.1.4
Умножим на .
Этап 2.2.5.2
Переформулируем задачу с помощью и .
Этап 2.2.6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.7
Интеграл по имеет вид .
Этап 2.2.8
Перепишем в виде .
Этап 2.2.9
Заменим все вхождения на .
Этап 2.2.10
Изменим порядок членов.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Вынесем из знаменателя, возведя в степень.
Этап 2.3.1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.3.1.2.2
Умножим на .
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Перепишем в виде .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .