Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=x/y , y(0)=-9
,
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
По правилу степени интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Объединим и .
Этап 3.2.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.3.1
Сократим общий множитель.
Этап 3.2.2.1.3.2
Перепишем это выражение.
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.
Этап 5
Так как принимает отрицательные значения при начальном условии , рассмотрим , чтобы найти . Подставим вместо , а вместо .
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 6.3
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.3.1
С помощью запишем в виде .
Этап 6.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.1
Возведение в любую положительную степень дает .
Этап 6.3.2.1.2
Добавим и .
Этап 6.3.2.1.3
Применим правило умножения к .
Этап 6.3.2.1.4
Возведем в степень .
Этап 6.3.2.1.5
Умножим на .
Этап 6.3.2.1.6
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.6.1
Применим правило степени и перемножим показатели, .
Этап 6.3.2.1.6.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.1.6.2.1
Сократим общий множитель.
Этап 6.3.2.1.6.2.2
Перепишем это выражение.
Этап 6.3.2.1.7
Упростим.
Этап 6.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Возведем в степень .
Этап 7
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Подставим вместо .