Математический анализ Примеры

Решите Дифференциальное Уравнение (-3x+y+6)dx+(x+y+2)dy=0
Этап 1
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем по .
Этап 1.2
По правилу суммы производная по имеет вид .
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.6
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Добавим и .
Этап 1.6.2
Добавим и .
Этап 2
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем по .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.6
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Добавим и .
Этап 2.6.2
Добавим и .
Этап 3
Проверим, что .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо , а вместо .
Этап 3.2
Так как обе части демонстрируют эквивалентность, уравнение является тождеством.
является тождеством.
является тождеством.
Этап 4
Приравняем к интегралу .
Этап 5
Проинтегрируем , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 5.1
Разделим данный интеграл на несколько интегралов.
Этап 5.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.3
По правилу степени интеграл по имеет вид .
Этап 5.4
Применим правило дифференцирования постоянных функций.
Этап 5.5
Объединим и .
Этап 5.6
Применим правило дифференцирования постоянных функций.
Этап 5.7
Упростим.
Этап 5.8
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.8.1
Изменим порядок членов.
Этап 5.8.2
Избавимся от скобок.
Этап 6
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 7
Зададим .
Этап 8
Найдем .
Нажмите для увеличения количества этапов...
Этап 8.1
Продифференцируем по .
Этап 8.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 8.2.1
По правилу суммы производная по имеет вид .
Этап 8.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 8.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 8.3.1
Поскольку является константой относительно , производная по равна .
Этап 8.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.3.3
Умножим на .
Этап 8.4
Поскольку является константой относительно , производная относительно равна .
Этап 8.5
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 8.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.6.1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 8.6.1.1
Добавим и .
Этап 8.6.1.2
Добавим и .
Этап 8.6.2
Изменим порядок членов.
Этап 9
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Вычтем из обеих частей уравнения.
Этап 9.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 9.1.2.1
Вычтем из .
Этап 9.1.2.2
Добавим и .
Этап 10
Найдем первообразную , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 10.1
Проинтегрируем обе части .
Этап 10.2
Найдем значение .
Этап 10.3
Разделим данный интеграл на несколько интегралов.
Этап 10.4
По правилу степени интеграл по имеет вид .
Этап 10.5
Применим правило дифференцирования постоянных функций.
Этап 10.6
Упростим.
Этап 11
Подставим выражение для в .
Этап 12
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.1
Объединим и .
Этап 12.2
Перенесем влево от .
Этап 12.3
Объединим и .