Математический анализ Примеры

Решите Дифференциальное Уравнение xcos(y)^2dx+tan(y)dy=0
Этап 1
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем по .
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 1.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Заменим все вхождения на .
Этап 1.4
Перенесем влево от .
Этап 1.5
Производная по равна .
Этап 1.6
Умножим на .
Этап 2
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем по .
Этап 2.2
Поскольку является константой относительно , производная относительно равна .
Этап 3
Проверим, что .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо , а вместо .
Этап 3.2
Так как левая часть не равна правой, уравнение не является тождеством.
не является тождеством.
не является тождеством.
Этап 4
Найдем коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим вместо .
Этап 4.2
Подставим вместо .
Этап 4.3
Подставим вместо .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Умножим на .
Этап 4.3.2.2
Изменим порядок и .
Этап 4.3.2.3
Добавим круглые скобки.
Этап 4.3.2.4
Добавим круглые скобки.
Этап 4.3.2.5
Изменим порядок и .
Этап 4.3.2.6
Изменим порядок и .
Этап 4.3.2.7
Применим формулу двойного угла для синуса.
Этап 4.3.2.8
Добавим и .
Этап 4.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Сократим общий множитель.
Этап 4.3.3.2
Перепишем это выражение.
Этап 4.3.4
Применим формулу двойного угла для синуса.
Этап 4.3.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.3.5.1
Вынесем множитель из .
Этап 4.3.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.3.5.2.1
Вынесем множитель из .
Этап 4.3.5.2.2
Сократим общий множитель.
Этап 4.3.5.2.3
Перепишем это выражение.
Этап 4.3.6
Разделим дроби.
Этап 4.3.7
Переведем в .
Этап 4.3.8
Подставим вместо .
Этап 4.4
Найдем коэффициент интегрирования .
Этап 5
Найдем интеграл .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.2
Интеграл по имеет вид .
Этап 5.3
Упростим.
Этап 5.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Упростим путем переноса под логарифм.
Этап 5.4.2
Экспонента и логарифм являются обратными функциями.
Этап 5.4.3
Уберем знак модуля в , поскольку любое число в четной степени всегда положительное.
Этап 6
Умножим обе стороны на коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Выразим через синусы и косинусы.
Этап 6.3
Применим правило умножения к .
Этап 6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Вынесем множитель из .
Этап 6.4.2
Сократим общий множитель.
Этап 6.4.3
Перепишем это выражение.
Этап 6.5
Единица в любой степени равна единице.
Этап 6.6
Умножим на .
Этап 6.7
Умножим на .
Этап 7
Приравняем к интегралу .
Этап 8
Проинтегрируем , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 8.1
По правилу степени интеграл по имеет вид .
Этап 9
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 10
Зададим .
Этап 11
Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1
Продифференцируем по .
Этап 11.2
По правилу суммы производная по имеет вид .
Этап 11.3
Поскольку является константой относительно , производная относительно равна .
Этап 11.4
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 11.5
Добавим и .
Этап 12
Найдем первообразную , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 12.1
Проинтегрируем обе части .
Этап 12.2
Найдем значение .
Этап 12.3
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 12.3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 12.3.1.1
Дифференцируем .
Этап 12.3.1.2
Производная по равна .
Этап 12.3.2
Переформулируем задачу с помощью и .
Этап 12.4
По правилу степени интеграл по имеет вид .
Этап 12.5
Заменим все вхождения на .
Этап 13
Подставим выражение для в .
Этап 14
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 14.1
Объединим и .
Этап 14.2
Объединим и .