Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Разделим данный интеграл на несколько интегралов.
Этап 2.2.2
Применим правило дифференцирования постоянных функций.
Этап 2.2.3
Проинтегрируем по частям, используя формулу , где и .
Этап 2.2.4
Упростим.
Этап 2.2.4.1
Объединим и .
Этап 2.2.4.2
Сократим общий множитель .
Этап 2.2.4.2.1
Сократим общий множитель.
Этап 2.2.4.2.2
Перепишем это выражение.
Этап 2.2.5
Применим правило дифференцирования постоянных функций.
Этап 2.2.6
Упростим.
Этап 2.2.6.1
Упростим.
Этап 2.2.6.2
Упростим.
Этап 2.2.6.2.1
Вычтем из .
Этап 2.2.6.2.2
Добавим и .
Этап 2.2.7
Изменим порядок членов.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Разделим данный интеграл на несколько интегралов.
Этап 2.3.3
Применим правило дифференцирования постоянных функций.
Этап 2.3.4
Проинтегрируем по частям, используя формулу , где и .
Этап 2.3.5
Упростим.
Этап 2.3.5.1
Объединим и .
Этап 2.3.5.2
Сократим общий множитель .
Этап 2.3.5.2.1
Сократим общий множитель.
Этап 2.3.5.2.2
Перепишем это выражение.
Этап 2.3.6
Применим правило дифференцирования постоянных функций.
Этап 2.3.7
Упростим.
Этап 2.3.8
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .