Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=(1+x)(1+y)
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общий множитель.
Этап 1.2.3
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Дифференцируем .
Этап 2.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.1.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.1.1.5
Добавим и .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Интеграл по имеет вид .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Применим правило дифференцирования постоянных функций.
Этап 2.3.3
По правилу степени интеграл по имеет вид .
Этап 2.3.4
Упростим.
Этап 2.3.5
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Объединим и .
Этап 3.3.3
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 3.3.4
Вычтем из обеих частей уравнения.
Этап 4
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем в виде .
Этап 4.2
Изменим порядок и .
Этап 4.3
Объединим константы с плюсом или минусом.