Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.2
Изменим порядок и .
Этап 2
Этап 2.1
Зададим интегрирование.
Этап 2.2
Проинтегрируем .
Этап 2.2.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.3
Умножим на .
Этап 2.2.4
Пусть . Тогда . Перепишем, используя и .
Этап 2.2.4.1
Пусть . Найдем .
Этап 2.2.4.1.1
Дифференцируем .
Этап 2.2.4.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.4.1.5
Добавим и .
Этап 2.2.4.2
Переформулируем задачу с помощью и .
Этап 2.2.5
Интеграл по имеет вид .
Этап 2.2.6
Упростим.
Этап 2.2.7
Заменим все вхождения на .
Этап 2.3
Уберем постоянную интегрирования.
Этап 2.4
Применим правило степени для логарифма.
Этап 2.5
Экспонента и логарифм являются обратными функциями.
Этап 2.6
Перепишем выражение, используя правило отрицательных степеней .
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим каждый член.
Этап 3.2.1
Объединим и .
Этап 3.2.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.3
Объединим и .
Этап 3.2.4
Умножим .
Этап 3.2.4.1
Умножим на .
Этап 3.2.4.2
Умножим на , сложив экспоненты.
Этап 3.2.4.2.1
Умножим на .
Этап 3.2.4.2.1.1
Возведем в степень .
Этап 3.2.4.2.1.2
Применим правило степени для объединения показателей.
Этап 3.2.4.2.2
Добавим и .
Этап 3.3
Сократим общий множитель .
Этап 3.3.1
Вынесем множитель из .
Этап 3.3.2
Сократим общий множитель.
Этап 3.3.3
Перепишем это выражение.
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Этап 7.1
Разделим данный интеграл на несколько интегралов.
Этап 7.2
По правилу степени интеграл по имеет вид .
Этап 7.3
Применим правило дифференцирования постоянных функций.
Этап 7.4
Упростим.
Этап 8
Этап 8.1
Объединим и .
Этап 8.2
Объединим и .
Этап 8.3
Умножим обе части на .
Этап 8.4
Упростим.
Этап 8.4.1
Упростим левую часть.
Этап 8.4.1.1
Сократим общий множитель .
Этап 8.4.1.1.1
Сократим общий множитель.
Этап 8.4.1.1.2
Перепишем это выражение.
Этап 8.4.2
Упростим правую часть.
Этап 8.4.2.1
Упростим .
Этап 8.4.2.1.1
Применим свойство дистрибутивности.
Этап 8.4.2.1.2
Объединим и .
Этап 8.4.2.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.4.2.1.4
Объединим и .
Этап 8.4.2.1.5
Объединим числители над общим знаменателем.
Этап 8.4.2.1.6
Вынесем множитель из .
Этап 8.4.2.1.6.1
Вынесем множитель из .
Этап 8.4.2.1.6.2
Вынесем множитель из .
Этап 8.4.2.1.6.3
Вынесем множитель из .
Этап 8.4.2.1.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.4.2.1.8
Упростим члены.
Этап 8.4.2.1.8.1
Объединим и .
Этап 8.4.2.1.8.2
Объединим числители над общим знаменателем.
Этап 8.4.2.1.9
Упростим числитель.
Этап 8.4.2.1.9.1
Вынесем множитель из .
Этап 8.4.2.1.9.1.1
Вынесем множитель из .
Этап 8.4.2.1.9.1.2
Вынесем множитель из .
Этап 8.4.2.1.9.1.3
Вынесем множитель из .
Этап 8.4.2.1.9.2
Применим свойство дистрибутивности.
Этап 8.4.2.1.9.3
Умножим на .
Этап 8.4.2.1.9.4
Перенесем влево от .
Этап 8.4.2.1.9.5
Перенесем влево от .