Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2
Сократим общий множитель .
Этап 3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2
Вынесем множитель из .
Этап 3.2.3
Сократим общий множитель.
Этап 3.2.4
Перепишем это выражение.
Этап 3.3
Объединим и .
Этап 3.4
Вынесем знак минуса перед дробью.
Этап 3.5
Перепишем, используя свойство коммутативности умножения.
Этап 3.6
Объединим и .
Этап 3.7
Сократим общий множитель .
Этап 3.7.1
Вынесем множитель из .
Этап 3.7.2
Вынесем множитель из .
Этап 3.7.3
Сократим общий множитель.
Этап 3.7.4
Перепишем это выражение.
Этап 3.8
Объединим и .
Этап 3.9
Вынесем знак минуса перед дробью.
Этап 4
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Этап 4.2.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.2.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 4.2.2.1
Пусть . Найдем .
Этап 4.2.2.1.1
Дифференцируем .
Этап 4.2.2.1.2
По правилу суммы производная по имеет вид .
Этап 4.2.2.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.2.2.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.2.1.5
Добавим и .
Этап 4.2.2.2
Переформулируем задачу с помощью и .
Этап 4.2.3
Упростим.
Этап 4.2.3.1
Умножим на .
Этап 4.2.3.2
Перенесем влево от .
Этап 4.2.4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.2.5
Интеграл по имеет вид .
Этап 4.2.6
Упростим.
Этап 4.2.7
Заменим все вхождения на .
Этап 4.3
Проинтегрируем правую часть.
Этап 4.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.3
Умножим на .
Этап 4.3.4
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 4.3.4.1
Пусть . Найдем .
Этап 4.3.4.1.1
Дифференцируем .
Этап 4.3.4.1.2
Продифференцируем.
Этап 4.3.4.1.2.1
По правилу суммы производная по имеет вид .
Этап 4.3.4.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 4.3.4.1.3
Найдем значение .
Этап 4.3.4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.4.1.3.3
Умножим на .
Этап 4.3.4.1.4
Добавим и .
Этап 4.3.4.2
Переформулируем задачу с помощью и .
Этап 4.3.5
Упростим.
Этап 4.3.5.1
Умножим на .
Этап 4.3.5.2
Перенесем влево от .
Этап 4.3.6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.7
Упростим.
Этап 4.3.7.1
Объединим и .
Этап 4.3.7.2
Сократим общий множитель и .
Этап 4.3.7.2.1
Вынесем множитель из .
Этап 4.3.7.2.2
Сократим общие множители.
Этап 4.3.7.2.2.1
Вынесем множитель из .
Этап 4.3.7.2.2.2
Сократим общий множитель.
Этап 4.3.7.2.2.3
Перепишем это выражение.
Этап 4.3.7.3
Вынесем знак минуса перед дробью.
Этап 4.3.8
Интеграл по имеет вид .
Этап 4.3.9
Упростим.
Этап 4.3.10
Заменим все вхождения на .
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Этап 5.1
Умножим обе части уравнения на .
Этап 5.2
Упростим обе части уравнения.
Этап 5.2.1
Упростим левую часть.
Этап 5.2.1.1
Упростим .
Этап 5.2.1.1.1
Объединим и .
Этап 5.2.1.1.2
Сократим общий множитель .
Этап 5.2.1.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.2.1.1.2.2
Вынесем множитель из .
Этап 5.2.1.1.2.3
Сократим общий множитель.
Этап 5.2.1.1.2.4
Перепишем это выражение.
Этап 5.2.1.1.3
Умножим.
Этап 5.2.1.1.3.1
Умножим на .
Этап 5.2.1.1.3.2
Умножим на .
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Упростим .
Этап 5.2.2.1.1
Объединим и .
Этап 5.2.2.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.2.1.3
Упростим члены.
Этап 5.2.2.1.3.1
Объединим и .
Этап 5.2.2.1.3.2
Объединим числители над общим знаменателем.
Этап 5.2.2.1.3.3
Сократим общий множитель .
Этап 5.2.2.1.3.3.1
Вынесем множитель из .
Этап 5.2.2.1.3.3.2
Сократим общий множитель.
Этап 5.2.2.1.3.3.3
Перепишем это выражение.
Этап 5.2.2.1.4
Перенесем влево от .
Этап 5.2.2.1.5
Применим свойство дистрибутивности.
Этап 5.2.2.1.6
Умножим .
Этап 5.2.2.1.6.1
Умножим на .
Этап 5.2.2.1.6.2
Умножим на .
Этап 5.2.2.1.7
Умножим на .
Этап 5.3
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 5.4
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 5.5
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.6
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 5.7
Решим относительно .
Этап 5.7.1
Перепишем уравнение в виде .
Этап 5.7.2
Умножим обе части на .
Этап 5.7.3
Упростим левую часть.
Этап 5.7.3.1
Сократим общий множитель .
Этап 5.7.3.1.1
Сократим общий множитель.
Этап 5.7.3.1.2
Перепишем это выражение.
Этап 5.7.4
Решим относительно .
Этап 5.7.4.1
Изменим порядок множителей в .
Этап 5.7.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 5.7.4.3
Изменим порядок множителей в .
Этап 5.7.4.4
Вычтем из обеих частей уравнения.
Этап 5.7.4.5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6
Этап 6.1
Упростим постоянную интегрирования.
Этап 6.2
Объединим константы с плюсом или минусом.