Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Применим правило дифференцирования постоянных функций.
Этап 2.3.3
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.3.1
Пусть . Найдем .
Этап 2.3.3.1.1
Дифференцируем .
Этап 2.3.3.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.1.4
Умножим на .
Этап 2.3.3.2
Переформулируем задачу с помощью и .
Этап 2.3.4
Объединим и .
Этап 2.3.5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.6
Интеграл по имеет вид .
Этап 2.3.7
Упростим.
Этап 2.3.8
Заменим все вхождения на .
Этап 2.3.9
Изменим порядок членов.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .