Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=x+1 , y(2)=3
,
Этап 1
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Применим правило дифференцирования постоянных функций.
Этап 2.3.4
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Вынесем множитель из .
Этап 4.2.1.2
Сократим общий множитель.
Этап 4.2.1.3
Перепишем это выражение.
Этап 4.2.2
Добавим и .
Этап 4.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Вычтем из .
Этап 5
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Подставим вместо .
Этап 5.2
Объединим и .