Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Разложим на множители.
Этап 1.2.1
Изменим порядок членов.
Этап 1.2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2.4
Перепишем в виде .
Этап 1.3
Умножим обе части на .
Этап 1.4
Сократим общий множитель .
Этап 1.4.1
Сократим общий множитель.
Этап 1.4.2
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.2.1.1
Пусть . Найдем .
Этап 2.2.1.1.1
Перепишем.
Этап 2.2.1.1.2
Разделим на .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Разделим дробь на несколько дробей.
Этап 2.2.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.4
Интеграл по имеет вид .
Этап 2.2.5
Упростим.
Этап 2.2.6
Заменим все вхождения на .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Применим правило дифференцирования постоянных функций.
Этап 2.3.4
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Разделим каждый член на и упростим.
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Этап 3.1.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Этап 3.1.3.1
Упростим каждый член.
Этап 3.1.3.1.1
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.2
Перепишем в виде .
Этап 3.1.3.1.3
Объединим и .
Этап 3.1.3.1.4
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.5
Перепишем в виде .
Этап 3.1.3.1.6
Умножим на .
Этап 3.1.3.1.7
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.8
Перепишем в виде .
Этап 3.2
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3.4
Решим относительно .
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 3.4.3
Вычтем из обеих частей уравнения.
Этап 3.4.4
Разделим каждый член на и упростим.
Этап 3.4.4.1
Разделим каждый член на .
Этап 3.4.4.2
Упростим левую часть.
Этап 3.4.4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.4.4.2.2
Разделим на .
Этап 3.4.4.3
Упростим правую часть.
Этап 3.4.4.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4.4.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.4.4.3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.4.4.3.3.1
Умножим на .
Этап 3.4.4.3.3.2
Умножим на .
Этап 3.4.4.3.3.3
Умножим на .
Этап 3.4.4.3.3.4
Умножим на .
Этап 3.4.4.3.4
Объединим числители над общим знаменателем.
Этап 3.4.4.3.5
Упростим каждый член.
Этап 3.4.4.3.5.1
Перенесем влево от .
Этап 3.4.4.3.5.2
Перепишем в виде .
Этап 3.4.4.3.5.3
Умножим на .
Этап 3.4.4.3.6
Разделим на .
Этап 4
Этап 4.1
Упростим постоянную интегрирования.
Этап 4.2
Перепишем в виде .
Этап 4.3
Изменим порядок и .
Этап 4.4
Объединим константы с плюсом или минусом.