Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=-y/x
Этап 1
Пусть . Подставим вместо .
Этап 2
Решим относительно .
Этап 3
Применим правило умножения, чтобы найти производную по .
Этап 4
Подставим вместо .
Этап 5
Решим подставленное дифференциальное уравнение.
Нажмите для увеличения количества этапов...
Этап 5.1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1.1.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.1.1.1.1
Вычтем из обеих частей уравнения.
Этап 5.1.1.1.2
Вычтем из .
Этап 5.1.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1.1.2.1
Разделим каждый член на .
Этап 5.1.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.1.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.1.2.2.1.1
Сократим общий множитель.
Этап 5.1.1.2.2.1.2
Разделим на .
Этап 5.1.1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.1.1.2.3.1
Вынесем знак минуса перед дробью.
Этап 5.1.2
Умножим обе части на .
Этап 5.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 5.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.1.3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.1.3.2.2
Вынесем множитель из .
Этап 5.1.3.2.3
Сократим общий множитель.
Этап 5.1.3.2.4
Перепишем это выражение.
Этап 5.1.4
Перепишем уравнение.
Этап 5.2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Зададим интеграл на каждой стороне.
Этап 5.2.2
Интеграл по имеет вид .
Этап 5.2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.2.3.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.2.3.3
Умножим на .
Этап 5.2.3.4
Интеграл по имеет вид .
Этап 5.2.3.5
Упростим.
Этап 5.2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 5.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1.1
Упростим путем переноса под логарифм.
Этап 5.3.2.1.1.2
Уберем знак модуля в , поскольку любое число в четной степени всегда положительное.
Этап 5.3.2.1.2
Используем свойства произведения логарифмов: .
Этап 5.3.2.1.3
Изменим порядок множителей в .
Этап 5.3.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.3.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 5.3.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.5.1
Перепишем уравнение в виде .
Этап 5.3.5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.5.2.1
Разделим каждый член на .
Этап 5.3.5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.5.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.5.2.2.1.1
Сократим общий множитель.
Этап 5.3.5.2.2.1.2
Разделим на .
Этап 5.3.5.3
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 5.4
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Упростим постоянную интегрирования.
Этап 5.4.2
Объединим константы с плюсом или минусом.
Этап 6
Подставим вместо .
Этап 7
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим обе части на .
Этап 7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1.1.1
Сократим общий множитель.
Этап 7.2.1.1.2
Перепишем это выражение.
Этап 7.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.2.2.1.1
Объединим и .
Этап 7.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.2.1.2.1
Вынесем множитель из .
Этап 7.2.2.1.2.2
Сократим общий множитель.
Этап 7.2.2.1.2.3
Перепишем это выражение.