Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Применим свойство дистрибутивности.
Этап 1.2
Умножим на , сложив экспоненты.
Этап 1.2.1
Умножим на .
Этап 1.2.1.1
Возведем в степень .
Этап 1.2.1.2
Применим правило степени для объединения показателей.
Этап 1.2.2
Добавим и .
Этап 1.3
Умножим на .
Этап 2
Разделим числитель и знаменатель на в наибольшей степени в знаменателе, т. е. .
Этап 3
Этап 3.1
Упростим каждый член.
Этап 3.1.1
Сократим общий множитель и .
Этап 3.1.1.1
Умножим на .
Этап 3.1.1.2
Сократим общие множители.
Этап 3.1.1.2.1
Вынесем множитель из .
Этап 3.1.1.2.2
Сократим общий множитель.
Этап 3.1.1.2.3
Перепишем это выражение.
Этап 3.1.2
Вынесем знак минуса перед дробью.
Этап 3.2
Упростим каждый член.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.2.2
Сократим общий множитель и .
Этап 3.2.2.1
Возведем в степень .
Этап 3.2.2.2
Вынесем множитель из .
Этап 3.2.2.3
Сократим общие множители.
Этап 3.2.2.3.1
Вынесем множитель из .
Этап 3.2.2.3.2
Сократим общий множитель.
Этап 3.2.2.3.3
Перепишем это выражение.
Этап 3.3
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 3.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 7
Этап 7.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 7.2
Найдем предел , который является константой по мере приближения к .
Этап 8
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 9
Этап 9.1
Упростим числитель.
Этап 9.1.1
Умножим на .
Этап 9.1.2
Добавим и .
Этап 9.2
Добавим и .
Этап 9.3
Разделим на .