Математический анализ Примеры

Оценить предел предел ( квадратный корень из x^2-4)/(x-2), когда x стремится к 2 справа
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Внесем предел под знак радикала.
Этап 1.1.2.1.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Возведем в степень .
Этап 1.1.2.3.2
Умножим на .
Этап 1.1.2.3.3
Вычтем из .
Этап 1.1.2.3.4
Перепишем в виде .
Этап 1.1.2.3.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
С помощью запишем в виде .
Этап 1.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.3
Заменим все вхождения на .
Этап 1.3.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3.5
Объединим и .
Этап 1.3.6
Объединим числители над общим знаменателем.
Этап 1.3.7
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.3.7.1
Умножим на .
Этап 1.3.7.2
Вычтем из .
Этап 1.3.8
Вынесем знак минуса перед дробью.
Этап 1.3.9
Объединим и .
Этап 1.3.10
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.3.11
По правилу суммы производная по имеет вид .
Этап 1.3.12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.13
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.14
Добавим и .
Этап 1.3.15
Объединим и .
Этап 1.3.16
Объединим и .
Этап 1.3.17
Сократим общий множитель.
Этап 1.3.18
Перепишем это выражение.
Этап 1.3.19
По правилу суммы производная по имеет вид .
Этап 1.3.20
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.21
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.22
Добавим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Перепишем в виде .
Этап 1.6
Умножим на .
Этап 2
Так как числитель положителен, а знаменатель стремится к нулю и больше нуля для около справа, функция неограниченно растет.