Введите задачу...
Элемент. математика Примеры
Этап 1
Этап 1.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 1.2
Решим неравенство.
Этап 1.2.1
Вычтем из обеих частей неравенства.
Этап 1.2.2
Разделим каждый член на и упростим.
Этап 1.2.2.1
Разделим каждый член на .
Этап 1.2.2.2
Упростим левую часть.
Этап 1.2.2.2.1
Сократим общий множитель .
Этап 1.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.2.1.2
Разделим на .
Этап 1.2.2.3
Упростим правую часть.
Этап 1.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.3
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 1.4
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 1.5
Решим неравенство.
Этап 1.5.1
Вычтем из обеих частей неравенства.
Этап 1.5.2
Разделим каждый член на и упростим.
Этап 1.5.2.1
Разделим каждый член на .
Этап 1.5.2.2
Упростим левую часть.
Этап 1.5.2.2.1
Сократим общий множитель .
Этап 1.5.2.2.1.1
Сократим общий множитель.
Этап 1.5.2.2.1.2
Разделим на .
Этап 1.5.2.3
Упростим правую часть.
Этап 1.5.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.6
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 1.7
Запишем в виде кусочной функции.
Этап 1.8
Упростим .
Этап 1.8.1
Упростим каждый член.
Этап 1.8.1.1
Применим свойство дистрибутивности.
Этап 1.8.1.2
Умножим на .
Этап 1.8.1.3
Умножим на .
Этап 1.8.2
Вычтем из .
Этап 1.9
Упростим .
Этап 1.9.1
Упростим каждый член.
Этап 1.9.1.1
Применим свойство дистрибутивности.
Этап 1.9.1.2
Умножим на .
Этап 1.9.1.3
Умножим на .
Этап 1.9.1.4
Применим свойство дистрибутивности.
Этап 1.9.1.5
Умножим на .
Этап 1.9.1.6
Умножим на .
Этап 1.9.2
Добавим и .
Этап 2
Этап 2.1
Решим относительно .
Этап 2.1.1
Перенесем все члены без в правую часть неравенства.
Этап 2.1.1.1
Вычтем из обеих частей неравенства.
Этап 2.1.1.2
Вычтем из .
Этап 2.1.2
Разделим каждый член на и упростим.
Этап 2.1.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 2.1.2.2
Упростим левую часть.
Этап 2.1.2.2.1
Сократим общий множитель .
Этап 2.1.2.2.1.1
Сократим общий множитель.
Этап 2.1.2.2.1.2
Разделим на .
Этап 2.1.2.3
Упростим правую часть.
Этап 2.1.2.3.1
Разделим на .
Этап 2.2
Найдем пересечение и .
Этап 3
Этап 3.1
Решим относительно .
Этап 3.1.1
Перенесем все члены без в правую часть неравенства.
Этап 3.1.1.1
Вычтем из обеих частей неравенства.
Этап 3.1.1.2
Вычтем из .
Этап 3.1.2
Разделим каждый член на и упростим.
Этап 3.1.2.1
Разделим каждый член на .
Этап 3.1.2.2
Упростим левую часть.
Этап 3.1.2.2.1
Сократим общий множитель .
Этап 3.1.2.2.1.1
Сократим общий множитель.
Этап 3.1.2.2.1.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Этап 3.1.2.3.1
Вынесем знак минуса перед дробью.
Этап 3.2
Найдем пересечение и .
Этап 4
Найдем объединение решений.
Этап 5
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 6