Введите задачу...
Элемент. математика Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 1.3
Сократим выражение путем отбрасывания общих множителей.
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.5
Множителем является само значение .
встречается раз.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Сократим общий множитель .
Этап 3.2.1.1.1
Сократим общий множитель.
Этап 3.2.1.1.2
Перепишем это выражение.
Этап 3.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.4
Умножим на .
Этап 3.2.1.5
Упростим каждый член.
Этап 3.2.1.5.1
Умножим на , сложив экспоненты.
Этап 3.2.1.5.1.1
Перенесем .
Этап 3.2.1.5.1.2
Умножим на .
Этап 3.2.1.5.2
Умножим на .
Этап 3.2.1.6
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.2.1.6.1
Применим свойство дистрибутивности.
Этап 3.2.1.6.2
Применим свойство дистрибутивности.
Этап 3.2.1.6.3
Применим свойство дистрибутивности.
Этап 3.2.1.7
Упростим и объединим подобные члены.
Этап 3.2.1.7.1
Упростим каждый член.
Этап 3.2.1.7.1.1
Умножим на .
Этап 3.2.1.7.1.2
Перенесем влево от .
Этап 3.2.1.7.1.3
Умножим на .
Этап 3.2.1.7.2
Вычтем из .
Этап 3.2.1.8
Применим свойство дистрибутивности.
Этап 3.2.1.9
Умножим на .
Этап 3.2.2
Упростим путем добавления членов.
Этап 3.2.2.1
Вычтем из .
Этап 3.2.2.2
Вычтем из .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Сократим общий множитель .
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общий множитель.
Этап 3.3.1.3
Перепишем это выражение.
Этап 3.3.2
Применим свойство дистрибутивности.
Этап 3.3.3
Умножим на .
Этап 4
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 4.3
Добавим и .
Этап 4.4
Вынесем множитель из .
Этап 4.4.1
Вынесем множитель из .
Этап 4.4.2
Вынесем множитель из .
Этап 4.4.3
Вынесем множитель из .
Этап 4.4.4
Вынесем множитель из .
Этап 4.4.5
Вынесем множитель из .
Этап 4.5
Разделим каждый член на и упростим.
Этап 4.5.1
Разделим каждый член на .
Этап 4.5.2
Упростим левую часть.
Этап 4.5.2.1
Сократим общий множитель .
Этап 4.5.2.1.1
Сократим общий множитель.
Этап 4.5.2.1.2
Разделим на .
Этап 4.5.3
Упростим правую часть.
Этап 4.5.3.1
Разделим на .
Этап 4.6
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.7
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.8
Упростим.
Этап 4.8.1
Упростим числитель.
Этап 4.8.1.1
Возведем в степень .
Этап 4.8.1.2
Умножим .
Этап 4.8.1.2.1
Умножим на .
Этап 4.8.1.2.2
Умножим на .
Этап 4.8.1.3
Вычтем из .
Этап 4.8.1.4
Перепишем в виде .
Этап 4.8.1.5
Перепишем в виде .
Этап 4.8.1.6
Перепишем в виде .
Этап 4.8.1.7
Перепишем в виде .
Этап 4.8.1.7.1
Вынесем множитель из .
Этап 4.8.1.7.2
Перепишем в виде .
Этап 4.8.1.8
Вынесем члены из-под знака корня.
Этап 4.8.1.9
Перенесем влево от .
Этап 4.8.2
Умножим на .
Этап 4.8.3
Упростим .
Этап 4.9
Окончательный ответ является комбинацией обоих решений.