Элемент. математика Примеры

Этап 1
Добавим к обеим частям уравнения.
Этап 2
Вычтем из обеих частей уравнения.
Этап 3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем в виде .
Этап 3.2
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу разности кубов, , где и .
Этап 3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим на .
Этап 3.3.2
Единица в любой степени равна единице.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 6.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1.1
Единица в любой степени равна единице.
Этап 6.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.2.3.1.2.1
Умножим на .
Этап 6.2.3.1.2.2
Умножим на .
Этап 6.2.3.1.3
Вычтем из .
Этап 6.2.3.1.4
Перепишем в виде .
Этап 6.2.3.1.5
Перепишем в виде .
Этап 6.2.3.1.6
Перепишем в виде .
Этап 6.2.3.2
Умножим на .
Этап 6.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 7
Окончательным решением являются все значения, при которых верно.