Элемент. математика Примеры

Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Избавимся от скобок.
Этап 1.3
НОК единицы и любого выражения есть это выражение.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Умножим на .
Этап 2.2.2.2
Перенесем влево от .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Сократим общий множитель.
Этап 2.3.1.2
Перепишем это выражение.
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Добавим к обеим частям уравнения.
Этап 3.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Возведем в степень .
Этап 3.4.1.2
Умножим на .
Этап 3.4.1.3
Применим свойство дистрибутивности.
Этап 3.4.1.4
Умножим на .
Этап 3.4.1.5
Умножим на .
Этап 3.4.1.6
Вычтем из .
Этап 3.4.2
Умножим на .
Этап 3.5
Окончательный ответ является комбинацией обоих решений.