Элемент. математика Примеры

Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Упростим левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Используем формулу тройного угла для преобразования в .
Этап 2.1.2
Используем формулу двойного угла для преобразования в .
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.1.4
Умножим на .
Этап 2.1.5
Умножим на .
Этап 2.2
Вычтем из .
Этап 3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Вынесем множитель из .
Этап 3.1.4
Вынесем множитель из .
Этап 3.1.5
Вынесем множитель из .
Этап 3.1.6
Вынесем множитель из .
Этап 3.1.7
Вынесем множитель из .
Этап 3.2
Изменим порядок членов.
Этап 3.3
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сгруппируем первые два члена и последние два члена.
Этап 3.3.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.4
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.4.2
Избавимся от ненужных скобок.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Точное значение : .
Этап 5.2.4
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5.2.5
Вычтем из .
Этап 5.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 5.2.6.1
Период функции можно вычислить по формуле .
Этап 5.2.6.2
Заменим на в формуле периода.
Этап 5.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.6.4
Разделим на .
Этап 5.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.1.2
Разделим на .
Этап 6.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 6.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Перепишем в виде .
Этап 6.2.4.2
Любой корень из равен .
Этап 6.2.4.3
Умножим на .
Этап 6.2.4.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.2.4.4.1
Умножим на .
Этап 6.2.4.4.2
Возведем в степень .
Этап 6.2.4.4.3
Возведем в степень .
Этап 6.2.4.4.4
Применим правило степени для объединения показателей.
Этап 6.2.4.4.5
Добавим и .
Этап 6.2.4.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.2.4.4.6.1
С помощью запишем в виде .
Этап 6.2.4.4.6.2
Применим правило степени и перемножим показатели, .
Этап 6.2.4.4.6.3
Объединим и .
Этап 6.2.4.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.4.4.6.4.1
Сократим общий множитель.
Этап 6.2.4.4.6.4.2
Перепишем это выражение.
Этап 6.2.4.4.6.5
Найдем экспоненту.
Этап 6.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 6.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6.2.6
Выпишем каждое выражение, чтобы найти решение для .
Этап 6.2.7
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 6.2.7.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 6.2.7.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.7.2.1
Точное значение : .
Этап 6.2.7.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 6.2.7.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.7.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.7.4.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.7.4.2.1
Объединим и .
Этап 6.2.7.4.2.2
Объединим числители над общим знаменателем.
Этап 6.2.7.4.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.7.4.3.1
Умножим на .
Этап 6.2.7.4.3.2
Вычтем из .
Этап 6.2.7.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 6.2.7.5.1
Период функции можно вычислить по формуле .
Этап 6.2.7.5.2
Заменим на в формуле периода.
Этап 6.2.7.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.7.5.4
Разделим на .
Этап 6.2.7.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6.2.8
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 6.2.8.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 6.2.8.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.8.2.1
Точное значение : .
Этап 6.2.8.3
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 6.2.8.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.8.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.8.4.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.8.4.2.1
Объединим и .
Этап 6.2.8.4.2.2
Объединим числители над общим знаменателем.
Этап 6.2.8.4.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.8.4.3.1
Умножим на .
Этап 6.2.8.4.3.2
Вычтем из .
Этап 6.2.8.5
Найдем период .
Нажмите для увеличения количества этапов...
Этап 6.2.8.5.1
Период функции можно вычислить по формуле .
Этап 6.2.8.5.2
Заменим на в формуле периода.
Этап 6.2.8.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.8.5.4
Разделим на .
Этап 6.2.8.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6.2.9
Перечислим все решения.
, для любого целого
Этап 6.2.10
Объединим ответы.
, для любого целого
, для любого целого
, для любого целого
Этап 7
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 8
Объединим и в .
, для любого целого