Элемент. математика Примеры

Risolvere per R 5/(1+R)+(5+100)/((1+R)^2)=101.7
Этап 1
Добавим и .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.5
Множителем является само значение .
встречается раз.
Этап 2.6
Множители  — это , то есть , умноженный на себя раз.
встречается раз.
Этап 2.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Вынесем множитель из .
Этап 3.2.1.1.2
Сократим общий множитель.
Этап 3.2.1.1.3
Перепишем это выражение.
Этап 3.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.3
Умножим на .
Этап 3.2.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.1
Сократим общий множитель.
Этап 3.2.1.4.2
Перепишем это выражение.
Этап 3.2.2
Добавим и .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Перепишем.
Этап 4.1.2
Перепишем в виде .
Этап 4.1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Применим свойство дистрибутивности.
Этап 4.1.3.2
Применим свойство дистрибутивности.
Этап 4.1.3.3
Применим свойство дистрибутивности.
Этап 4.1.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.4.1.1
Умножим на .
Этап 4.1.4.1.2
Умножим на .
Этап 4.1.4.1.3
Умножим на .
Этап 4.1.4.1.4
Умножим на .
Этап 4.1.4.2
Добавим и .
Этап 4.1.5
Применим свойство дистрибутивности.
Этап 4.1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.6.1
Умножим на .
Этап 4.1.6.2
Умножим на .
Этап 4.2
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.3
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вычтем из обеих частей уравнения.
Этап 4.3.2
Вычтем из .
Этап 4.4
Вычтем из обеих частей уравнения.
Этап 4.5
Вычтем из .
Этап 4.6
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Вынесем множитель из .
Этап 4.6.2
Вынесем множитель из .
Этап 4.6.3
Вынесем множитель из .
Этап 4.6.4
Вынесем множитель из .
Этап 4.6.5
Вынесем множитель из .
Этап 4.7
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.7.1
Разделим каждый член на .
Этап 4.7.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.7.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.7.2.1.1
Сократим общий множитель.
Этап 4.7.2.1.2
Разделим на .
Этап 4.7.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.7.3.1
Разделим на .
Этап 4.8
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.9
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.10.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.10.1.1
Возведем в степень .
Этап 4.10.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.10.1.2.1
Умножим на .
Этап 4.10.1.2.2
Умножим на .
Этап 4.10.1.3
Добавим и .
Этап 4.10.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.10.1.4.1
Вынесем множитель из .
Этап 4.10.1.4.2
Перепишем в виде .
Этап 4.10.1.5
Вынесем члены из-под знака корня.
Этап 4.10.2
Умножим на .
Этап 4.10.3
Упростим .
Этап 4.11
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: