Элемент. математика Примеры

Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.4
У есть множители: и .
Этап 1.5
Умножим на .
Этап 1.6
Множителем является само значение .
встречается раз.
Этап 1.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.8
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.2
Применим свойство дистрибутивности.
Этап 2.2.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.1
Перенесем .
Этап 2.2.1.3.2
Умножим на .
Этап 2.2.1.4
Умножим на .
Этап 2.2.1.5
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.6
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.6.1
Объединим и .
Этап 2.2.1.6.2
Умножим на .
Этап 2.2.1.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.7.1
Сократим общий множитель.
Этап 2.2.1.7.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Сократим общий множитель.
Этап 2.3.1.2
Перепишем это выражение.
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Вычтем из .
Этап 3.2
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Добавим к обеим частям уравнения.
Этап 3.2.2
Добавим и .
Этап 3.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 3.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.5.1.1
Возведем в степень .
Этап 3.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.5.1.2.1
Умножим на .
Этап 3.5.1.2.2
Умножим на .
Этап 3.5.1.3
Вычтем из .
Этап 3.5.1.4
Перепишем в виде .
Этап 3.5.1.5
Перепишем в виде .
Этап 3.5.1.6
Перепишем в виде .
Этап 3.5.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.5.1.7.1
Вынесем множитель из .
Этап 3.5.1.7.2
Перепишем в виде .
Этап 3.5.1.8
Вынесем члены из-под знака корня.
Этап 3.5.1.9
Перенесем влево от .
Этап 3.5.2
Умножим на .
Этап 3.6
Окончательный ответ является комбинацией обоих решений.