Элемент. математика Примеры

Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.9
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.2
Вынесем множитель из .
Этап 3.2.1.3
Сократим общий множитель.
Этап 3.2.1.4
Перепишем это выражение.
Этап 3.2.2
Умножим на .
Этап 3.2.3
Применим свойство дистрибутивности.
Этап 3.2.4
Умножим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Сократим общий множитель.
Этап 3.3.1.2.2
Перепишем это выражение.
Этап 3.3.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1
Вынесем множитель из .
Этап 3.3.1.3.2
Сократим общий множитель.
Этап 3.3.1.3.3
Перепишем это выражение.
Этап 3.3.1.4
Применим свойство дистрибутивности.
Этап 3.3.1.5
Умножим на .
Этап 3.3.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.6.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.1.6.2
Вынесем множитель из .
Этап 3.3.1.6.3
Сократим общий множитель.
Этап 3.3.1.6.4
Перепишем это выражение.
Этап 3.3.1.7
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1
Применим свойство дистрибутивности.
Этап 3.3.1.7.2
Применим свойство дистрибутивности.
Этап 3.3.1.7.3
Применим свойство дистрибутивности.
Этап 3.3.1.8
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.3.1.8.1
Изменим порядок множителей в членах и .
Этап 3.3.1.8.2
Добавим и .
Этап 3.3.1.8.3
Добавим и .
Этап 3.3.1.9
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.9.1
Умножим на .
Этап 3.3.1.9.2
Умножим на .
Этап 3.3.1.10
Применим свойство дистрибутивности.
Этап 3.3.1.11
Умножим на .
Этап 3.3.2
Добавим и .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Добавим и .
Этап 4.3
Вычтем из обеих частей уравнения.
Этап 4.4
Вычтем из .
Этап 4.5
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Изменим порядок и .
Этап 4.5.2
Вынесем множитель из .
Этап 4.5.3
Вынесем множитель из .
Этап 4.5.4
Вынесем множитель из .
Этап 4.5.5
Вынесем множитель из .
Этап 4.5.6
Вынесем множитель из .
Этап 4.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Разделим каждый член на .
Этап 4.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.6.2.1.1
Сократим общий множитель.
Этап 4.6.2.1.2
Разделим на .
Этап 4.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.6.3.1
Разделим на .
Этап 4.7
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.8
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.9
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.9.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.9.1.1
Возведем в степень .
Этап 4.9.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.9.1.2.1
Умножим на .
Этап 4.9.1.2.2
Умножим на .
Этап 4.9.1.3
Вычтем из .
Этап 4.9.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.9.1.4.1
Вынесем множитель из .
Этап 4.9.1.4.2
Перепишем в виде .
Этап 4.9.1.5
Вынесем члены из-под знака корня.
Этап 4.9.2
Умножим на .
Этап 4.9.3
Упростим .
Этап 4.10
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: