Элемент. математика Примеры

Упростить (((4y^2-13y+3)/(2y^2-5y-12))÷((2y^2+9y+9)/(16y^2-1)))÷((y^2+3y-28)/(y^(2-9)))
Этап 1
Чтобы разделить на дробь, умножим на обратную к ней дробь.
Этап 2
Чтобы разделить на дробь, умножим на обратную к ней дробь.
Этап 3
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Запишем как плюс
Этап 3.1.3
Применим свойство дистрибутивности.
Этап 3.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Запишем как плюс
Этап 4.1.3
Применим свойство дистрибутивности.
Этап 4.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем в виде .
Этап 5.2
Перепишем в виде .
Этап 5.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 6
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 6.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Вынесем множитель из .
Этап 6.1.2
Запишем как плюс
Этап 6.1.3
Применим свойство дистрибутивности.
Этап 6.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сгруппируем первые два члена и последние два члена.
Этап 6.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 6.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 7
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Возведем в степень .
Этап 7.3
Возведем в степень .
Этап 7.4
Применим правило степени для объединения показателей.
Этап 7.5
Добавим и .
Этап 7.6
Возведем в степень .
Этап 7.7
Возведем в степень .
Этап 7.8
Применим правило степени для объединения показателей.
Этап 7.9
Добавим и .
Этап 8
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 8.1
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 8.2
Объединим.
Этап 8.3
Умножим на .
Этап 9
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 9.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 9.2
Объединим показатели степеней.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Возведем в степень .
Этап 9.2.2
Возведем в степень .
Этап 9.2.3
Применим правило степени для объединения показателей.
Этап 9.2.4
Добавим и .
Этап 9.3
Вычтем из .
Этап 9.4
Умножим на .
Этап 10
Изменим порядок множителей в .