Введите задачу...
Элемент. математика Примеры
Этап 1
Этап 1.1
Применим свойство дистрибутивности.
Этап 1.2
Перепишем в виде .
Этап 1.3
Умножим на .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Избавимся от скобок.
Этап 2.3
НОК единицы и любого выражения есть это выражение.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.2
Сократим общий множитель.
Этап 3.2.1.3
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.2
Умножим на , сложив экспоненты.
Этап 3.3.1.2.1
Перенесем .
Этап 3.3.1.2.2
Умножим на .
Этап 3.3.1.3
Умножим на .
Этап 3.3.1.4
Применим свойство дистрибутивности.
Этап 3.3.1.5
Умножим на .
Этап 3.3.2
Вычтем из .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 4.3
Добавим и .
Этап 4.4
Разложим левую часть уравнения на множители.
Этап 4.4.1
Вынесем множитель из .
Этап 4.4.1.1
Вынесем множитель из .
Этап 4.4.1.2
Вынесем множитель из .
Этап 4.4.1.3
Перепишем в виде .
Этап 4.4.1.4
Вынесем множитель из .
Этап 4.4.1.5
Вынесем множитель из .
Этап 4.4.2
Разложим на множители.
Этап 4.4.2.1
Разложим на множители, используя метод группировки.
Этап 4.4.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.4.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.4.2.2
Избавимся от ненужных скобок.
Этап 4.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.6
Приравняем к , затем решим относительно .
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Вычтем из обеих частей уравнения.
Этап 4.7
Приравняем к , затем решим относительно .
Этап 4.7.1
Приравняем к .
Этап 4.7.2
Вычтем из обеих частей уравнения.
Этап 4.8
Окончательным решением являются все значения, при которых верно.