Элемент. математика Примеры

Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.6
Множителем является само значение .
встречается раз.
Этап 1.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Сократим общий множитель.
Этап 2.3.1.2
Перепишем это выражение.
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Перепишем в виде .
Этап 3.1.2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.1.2.2.1
Применим свойство дистрибутивности.
Этап 3.1.2.2.2
Применим свойство дистрибутивности.
Этап 3.1.2.2.3
Применим свойство дистрибутивности.
Этап 3.1.2.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.2.3.1.1
Умножим на .
Этап 3.1.2.3.1.2
Перенесем влево от .
Этап 3.1.2.3.1.3
Перепишем в виде .
Этап 3.1.2.3.1.4
Перепишем в виде .
Этап 3.1.2.3.1.5
Умножим на .
Этап 3.1.2.3.2
Вычтем из .
Этап 3.1.3
Вычтем из .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вычтем из .
Этап 3.3.2
Добавим и .
Этап 3.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Вынесем множитель из .
Этап 3.4.2
Вынесем множитель из .
Этап 3.4.3
Вынесем множитель из .
Этап 3.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.6
Приравняем к .
Этап 3.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.7.1
Приравняем к .
Этап 3.7.2
Добавим к обеим частям уравнения.
Этап 3.8
Окончательным решением являются все значения, при которых верно.
Этап 4
Исключим решения, которые не делают истинным.