Введите задачу...
Элемент. математика Примеры
Этап 1
Перепишем в виде .
Этап 2
Перепишем в виде степенного выражения.
Этап 3
Подставим вместо .
Этап 4
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Объединим и .
Этап 5
Изменим порядок и .
Этап 6
Этап 6.1
Найдем НОК знаменателей членов уравнения.
Этап 6.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 6.1.2
НОК единицы и любого выражения есть это выражение.
Этап 6.2
Каждый член в умножим на , чтобы убрать дроби.
Этап 6.2.1
Умножим каждый член на .
Этап 6.2.2
Упростим левую часть.
Этап 6.2.2.1
Упростим каждый член.
Этап 6.2.2.1.1
Умножим на , сложив экспоненты.
Этап 6.2.2.1.1.1
Перенесем .
Этап 6.2.2.1.1.2
Умножим на .
Этап 6.2.2.1.2
Сократим общий множитель .
Этап 6.2.2.1.2.1
Сократим общий множитель.
Этап 6.2.2.1.2.2
Перепишем это выражение.
Этап 6.3
Решим уравнение.
Этап 6.3.1
Вычтем из обеих частей уравнения.
Этап 6.3.2
Разложим левую часть уравнения на множители.
Этап 6.3.2.1
Вынесем множитель из .
Этап 6.3.2.1.1
Перенесем .
Этап 6.3.2.1.2
Вынесем множитель из .
Этап 6.3.2.1.3
Вынесем множитель из .
Этап 6.3.2.1.4
Перепишем в виде .
Этап 6.3.2.1.5
Вынесем множитель из .
Этап 6.3.2.1.6
Вынесем множитель из .
Этап 6.3.2.2
Разложим на множители.
Этап 6.3.2.2.1
Разложим на множители, используя метод группировки.
Этап 6.3.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 6.3.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 6.3.2.2.2
Избавимся от ненужных скобок.
Этап 6.3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.3.4
Приравняем к , затем решим относительно .
Этап 6.3.4.1
Приравняем к .
Этап 6.3.4.2
Добавим к обеим частям уравнения.
Этап 6.3.5
Приравняем к , затем решим относительно .
Этап 6.3.5.1
Приравняем к .
Этап 6.3.5.2
Вычтем из обеих частей уравнения.
Этап 6.3.6
Окончательным решением являются все значения, при которых верно.
Этап 7
Подставим вместо в .
Этап 8
Этап 8.1
Перепишем уравнение в виде .
Этап 8.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 8.3
Развернем , вынося из логарифма.
Этап 8.4
Упростим правую часть.
Этап 8.4.1
Натуральный логарифм равен .
Этап 8.5
Разделим каждый член на и упростим.
Этап 8.5.1
Разделим каждый член на .
Этап 8.5.2
Упростим левую часть.
Этап 8.5.2.1
Сократим общий множитель .
Этап 8.5.2.1.1
Сократим общий множитель.
Этап 8.5.2.1.2
Разделим на .
Этап 8.5.3
Упростим правую часть.
Этап 8.5.3.1
Разделим на .
Этап 9
Подставим вместо в .
Этап 10
Этап 10.1
Перепишем уравнение в виде .
Этап 10.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 10.3
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 10.4
Нет решения для
Нет решения
Нет решения
Этап 11
Перечислим решения, делающие уравнение истинным.