Элемент. математика Примеры

Этап 1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем в виде .
Этап 1.2
Пусть . Подставим вместо для всех.
Этап 1.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вынесем множитель из .
Этап 1.3.2
Вынесем множитель из .
Этап 1.3.3
Вынесем множитель из .
Этап 1.4
Заменим все вхождения на .
Этап 2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Приравняем к .
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Перепишем в виде .
Этап 3.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.2.2.3
Плюс или минус равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4.2.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Перепишем в виде .
Этап 4.2.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 4.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Окончательным решением являются все значения, при которых верно.