Элемент. математика Примеры

Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
Множители  — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.9
Умножим на .
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Вынесем множитель из .
Этап 3.2.1.2
Сократим общий множитель.
Этап 3.2.1.3
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Сократим общий множитель.
Этап 3.3.1.2
Перепишем это выражение.
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Добавим к обеим частям уравнения.
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Пусть . Подставим вместо для всех.
Этап 4.3.2
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.3.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.3.3
Заменим все вхождения на .
Этап 4.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Добавим к обеим частям уравнения.
Этап 4.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Вычтем из обеих частей уравнения.
Этап 4.7
Окончательным решением являются все значения, при которых верно.