Элемент. математика Примеры

Найти дисперсию 30 , 31 , 32 , 33 , 34
, , , ,
Этап 1
Среднее арифметическое значение набора чисел ― это их сумма, деленная на число членов.
Этап 2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим и .
Этап 2.2
Добавим и .
Этап 2.3
Добавим и .
Этап 2.4
Добавим и .
Этап 3
Разделим на .
Этап 4
Запишем формулу для дисперсии. Дисперсия множества значений — это мера их разброса.
Этап 5
Запишем формулу дисперсии для этого набора чисел.
Этап 6
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Вычтем из .
Этап 6.1.2
Возведем в степень .
Этап 6.1.3
Вычтем из .
Этап 6.1.4
Возведем в степень .
Этап 6.1.5
Вычтем из .
Этап 6.1.6
Возведение в любую положительную степень дает .
Этап 6.1.7
Вычтем из .
Этап 6.1.8
Единица в любой степени равна единице.
Этап 6.1.9
Вычтем из .
Этап 6.1.10
Возведем в степень .
Этап 6.1.11
Добавим и .
Этап 6.1.12
Добавим и .
Этап 6.1.13
Добавим и .
Этап 6.1.14
Добавим и .
Этап 6.2
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Вычтем из .
Этап 6.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Вынесем множитель из .
Этап 6.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Вынесем множитель из .
Этап 6.2.2.2.2
Сократим общий множитель.
Этап 6.2.2.2.3
Перепишем это выражение.
Этап 7
Аппроксимируем результат.