Алгебра Примеры

Найти пересечение с осями X и Y 4x^3-4x-x^5
Этап 1
Запишем в виде уравнения.
Этап 2
Найдем точки пересечения с осью x.
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем уравнение в виде .
Этап 2.2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Изменим порядок выражения.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.1
Перенесем .
Этап 2.2.2.1.1.2
Изменим порядок и .
Этап 2.2.2.1.2
Вынесем множитель из .
Этап 2.2.2.1.3
Вынесем множитель из .
Этап 2.2.2.1.4
Вынесем множитель из .
Этап 2.2.2.1.5
Вынесем множитель из .
Этап 2.2.2.1.6
Вынесем множитель из .
Этап 2.2.2.2
Перепишем в виде .
Этап 2.2.2.3
Пусть . Подставим вместо для всех.
Этап 2.2.2.4
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 2.2.2.4.1
Перепишем в виде .
Этап 2.2.2.4.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.2.2.4.3
Перепишем многочлен.
Этап 2.2.2.4.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 2.2.2.5
Заменим все вхождения на .
Этап 2.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.2.4
Приравняем к .
Этап 2.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Приравняем к .
Этап 2.2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.5.2.1
Приравняем к .
Этап 2.2.5.2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.5.2.2.1
Добавим к обеим частям уравнения.
Этап 2.2.5.2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.2.5.2.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.2.5.2.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.2.5.2.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.2.5.2.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.2.6
Окончательным решением являются все значения, при которых верно.
Этап 2.3
Точки пересечения с осью x в форме точки.
точки пересечения с осью x:
точки пересечения с осью x:
Этап 3
Найдем точку пересечения с осью Y.
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 3.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Избавимся от скобок.
Этап 3.2.2
Избавимся от скобок.
Этап 3.2.3
Избавимся от скобок.
Этап 3.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.4.1.1
Возведение в любую положительную степень дает .
Этап 3.2.4.1.2
Умножим на .
Этап 3.2.4.1.3
Умножим на .
Этап 3.2.4.1.4
Возведение в любую положительную степень дает .
Этап 3.2.4.1.5
Умножим на .
Этап 3.2.4.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 3.2.4.2.1
Добавим и .
Этап 3.2.4.2.2
Добавим и .
Этап 3.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 4
Перечислим пересечения.
точки пересечения с осью x:
Точки пересечения с осью y:
Этап 5