Алгебра Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Перепишем в виде .
Этап 2.4
Изменим порядок членов.
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.4
Добавим и .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Вычтем из обеих частей уравнения.
Этап 5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.1.2
Перепишем это выражение.
Этап 5.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Сократим общий множитель.
Этап 5.2.2.2.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Умножим числитель и знаменатель на комплексно сопряженное , чтобы сделать знаменатель вещественным.
Этап 5.2.3.2
Умножим.
Нажмите для увеличения количества этапов...
Этап 5.2.3.2.1
Объединим.
Этап 5.2.3.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.2.3.2.2.1
Добавим круглые скобки.
Этап 5.2.3.2.2.2
Возведем в степень .
Этап 5.2.3.2.2.3
Возведем в степень .
Этап 5.2.3.2.2.4
Применим правило степени для объединения показателей.
Этап 5.2.3.2.2.5
Добавим и .
Этап 5.2.3.2.2.6
Перепишем в виде .
Этап 5.2.3.3
Умножим на .
Этап 5.2.3.4
Деление двух отрицательных значений дает положительное значение.
Этап 6
Заменим на .