Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Этап 1.2
Умножим каждую строку первой матрицы на каждый столбец второй матрицы.
Этап 2
Write as a linear system of equations.
Этап 3
Этап 3.1
Решим относительно в .
Этап 3.1.1
Добавим к обеим частям уравнения.
Этап 3.1.2
Разделим каждый член на и упростим.
Этап 3.1.2.1
Разделим каждый член на .
Этап 3.1.2.2
Упростим левую часть.
Этап 3.1.2.2.1
Сократим общий множитель .
Этап 3.1.2.2.1.1
Сократим общий множитель.
Этап 3.1.2.2.1.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Этап 3.1.2.3.1
Упростим каждый член.
Этап 3.1.2.3.1.1
Разделим на .
Этап 3.1.2.3.1.2
Сократим общий множитель .
Этап 3.1.2.3.1.2.1
Сократим общий множитель.
Этап 3.1.2.3.1.2.2
Разделим на .
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Упростим каждый член.
Этап 3.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.2
Умножим на .
Этап 3.2.2.1.2
Добавим и .
Этап 3.3
Решим относительно в .
Этап 3.3.1
Перенесем все члены без в правую часть уравнения.
Этап 3.3.1.1
Вычтем из обеих частей уравнения.
Этап 3.3.1.2
Вычтем из .
Этап 3.3.2
Разделим каждый член на и упростим.
Этап 3.3.2.1
Разделим каждый член на .
Этап 3.3.2.2
Упростим левую часть.
Этап 3.3.2.2.1
Сократим общий множитель .
Этап 3.3.2.2.1.1
Сократим общий множитель.
Этап 3.3.2.2.1.2
Разделим на .
Этап 3.3.2.3
Упростим правую часть.
Этап 3.3.2.3.1
Разделим на .
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим .
Этап 3.4.2.1
Упростим левую часть.
Этап 3.4.2.1.1
Избавимся от скобок.
Этап 3.4.2.2
Упростим правую часть.
Этап 3.4.2.2.1
Добавим и .
Этап 3.5
Перечислим все решения.