Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Чтобы убедиться в соответствии таблицы правилу функции, проверим, удовлетворяют ли значения линейной форме .
Этап 1.2
На основе этой таблицы создадим набор уравнений, для которого .
Этап 1.3
Вычислим значения и .
Этап 1.3.1
Решим относительно в .
Этап 1.3.1.1
Перепишем уравнение в виде .
Этап 1.3.1.2
Перенесем влево от .
Этап 1.3.1.3
Добавим к обеим частям уравнения.
Этап 1.3.2
Заменим все вхождения на во всех уравнениях.
Этап 1.3.2.1
Заменим все вхождения в на .
Этап 1.3.2.2
Упростим .
Этап 1.3.2.2.1
Упростим левую часть.
Этап 1.3.2.2.1.1
Избавимся от скобок.
Этап 1.3.2.2.2
Упростим правую часть.
Этап 1.3.2.2.2.1
Упростим .
Этап 1.3.2.2.2.1.1
Перенесем влево от .
Этап 1.3.2.2.2.1.2
Добавим и .
Этап 1.3.2.3
Заменим все вхождения в на .
Этап 1.3.2.4
Упростим .
Этап 1.3.2.4.1
Упростим левую часть.
Этап 1.3.2.4.1.1
Избавимся от скобок.
Этап 1.3.2.4.2
Упростим правую часть.
Этап 1.3.2.4.2.1
Упростим .
Этап 1.3.2.4.2.1.1
Упростим каждый член.
Этап 1.3.2.4.2.1.1.1
Перенесем влево от .
Этап 1.3.2.4.2.1.1.2
Перепишем в виде .
Этап 1.3.2.4.2.1.2
Добавим и .
Этап 1.3.3
Решим относительно в .
Этап 1.3.3.1
Перепишем уравнение в виде .
Этап 1.3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 1.3.3.2.1
Вычтем из обеих частей уравнения.
Этап 1.3.3.2.2
Вычтем из .
Этап 1.3.3.3
Разделим каждый член на и упростим.
Этап 1.3.3.3.1
Разделим каждый член на .
Этап 1.3.3.3.2
Упростим левую часть.
Этап 1.3.3.3.2.1
Сократим общий множитель .
Этап 1.3.3.3.2.1.1
Сократим общий множитель.
Этап 1.3.3.3.2.1.2
Разделим на .
Этап 1.3.3.3.3
Упростим правую часть.
Этап 1.3.3.3.3.1
Разделим на .
Этап 1.3.4
Заменим все вхождения на во всех уравнениях.
Этап 1.3.4.1
Заменим все вхождения в на .
Этап 1.3.4.2
Упростим правую часть.
Этап 1.3.4.2.1
Добавим и .
Этап 1.3.4.3
Заменим все вхождения в на .
Этап 1.3.4.4
Упростим правую часть.
Этап 1.3.4.4.1
Упростим .
Этап 1.3.4.4.1.1
Умножим на .
Этап 1.3.4.4.1.2
Вычтем из .
Этап 1.3.5
Так как не выполняется, решений нет.
Нет решения
Нет решения
Этап 1.4
Поскольку для соответствующих значений , эта функция не является линейной.
Функция не является линейной.
Функция не является линейной.
Этап 2
Этап 2.1
Чтобы убедиться в соответствии таблицы правилу функции, проверим, можно ли правило функции сформулировать в виде .
Этап 2.2
На основе этой таблицы создадим набор уравнений , для которого .
Этап 2.3
Вычислим значения , и .
Этап 2.3.1
Решим относительно в .
Этап 2.3.1.1
Перепишем уравнение в виде .
Этап 2.3.1.2
Упростим каждый член.
Этап 2.3.1.2.1
Возведем в степень .
Этап 2.3.1.2.2
Перенесем влево от .
Этап 2.3.1.2.3
Перенесем влево от .
Этап 2.3.1.3
Перенесем все члены без в правую часть уравнения.
Этап 2.3.1.3.1
Вычтем из обеих частей уравнения.
Этап 2.3.1.3.2
Добавим к обеим частям уравнения.
Этап 2.3.2
Заменим все вхождения на во всех уравнениях.
Этап 2.3.2.1
Заменим все вхождения в на .
Этап 2.3.2.2
Упростим .
Этап 2.3.2.2.1
Упростим левую часть.
Этап 2.3.2.2.1.1
Избавимся от скобок.
Этап 2.3.2.2.2
Упростим правую часть.
Этап 2.3.2.2.2.1
Упростим .
Этап 2.3.2.2.2.1.1
Упростим каждый член.
Этап 2.3.2.2.2.1.1.1
Возведем в степень .
Этап 2.3.2.2.2.1.1.2
Перенесем влево от .
Этап 2.3.2.2.2.1.1.3
Перенесем влево от .
Этап 2.3.2.2.2.1.2
Упростим путем добавления членов.
Этап 2.3.2.2.2.1.2.1
Вычтем из .
Этап 2.3.2.2.2.1.2.2
Добавим и .
Этап 2.3.2.3
Заменим все вхождения в на .
Этап 2.3.2.4
Упростим .
Этап 2.3.2.4.1
Упростим левую часть.
Этап 2.3.2.4.1.1
Избавимся от скобок.
Этап 2.3.2.4.2
Упростим правую часть.
Этап 2.3.2.4.2.1
Упростим .
Этап 2.3.2.4.2.1.1
Упростим каждый член.
Этап 2.3.2.4.2.1.1.1
Возведем в степень .
Этап 2.3.2.4.2.1.1.2
Умножим на .
Этап 2.3.2.4.2.1.1.3
Перенесем влево от .
Этап 2.3.2.4.2.1.1.4
Перепишем в виде .
Этап 2.3.2.4.2.1.2
Упростим путем добавления членов.
Этап 2.3.2.4.2.1.2.1
Вычтем из .
Этап 2.3.2.4.2.1.2.2
Добавим и .
Этап 2.3.3
Решим относительно в .
Этап 2.3.3.1
Перепишем уравнение в виде .
Этап 2.3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 2.3.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.3.2.2
Вычтем из обеих частей уравнения.
Этап 2.3.3.2.3
Вычтем из .
Этап 2.3.4
Заменим все вхождения на во всех уравнениях.
Этап 2.3.4.1
Заменим все вхождения в на .
Этап 2.3.4.2
Упростим правую часть.
Этап 2.3.4.2.1
Упростим .
Этап 2.3.4.2.1.1
Упростим каждый член.
Этап 2.3.4.2.1.1.1
Применим свойство дистрибутивности.
Этап 2.3.4.2.1.1.2
Умножим на .
Этап 2.3.4.2.1.1.3
Умножим на .
Этап 2.3.4.2.1.2
Упростим путем добавления членов.
Этап 2.3.4.2.1.2.1
Добавим и .
Этап 2.3.4.2.1.2.2
Добавим и .
Этап 2.3.4.3
Заменим все вхождения в на .
Этап 2.3.4.4
Упростим правую часть.
Этап 2.3.4.4.1
Упростим .
Этап 2.3.4.4.1.1
Упростим каждый член.
Этап 2.3.4.4.1.1.1
Применим свойство дистрибутивности.
Этап 2.3.4.4.1.1.2
Умножим на .
Этап 2.3.4.4.1.1.3
Умножим на .
Этап 2.3.4.4.1.2
Упростим путем добавления членов.
Этап 2.3.4.4.1.2.1
Вычтем из .
Этап 2.3.4.4.1.2.2
Добавим и .
Этап 2.3.5
Решим относительно в .
Этап 2.3.5.1
Перепишем уравнение в виде .
Этап 2.3.5.2
Перенесем все члены без в правую часть уравнения.
Этап 2.3.5.2.1
Добавим к обеим частям уравнения.
Этап 2.3.5.2.2
Добавим и .
Этап 2.3.5.3
Разделим каждый член на и упростим.
Этап 2.3.5.3.1
Разделим каждый член на .
Этап 2.3.5.3.2
Упростим левую часть.
Этап 2.3.5.3.2.1
Сократим общий множитель .
Этап 2.3.5.3.2.1.1
Сократим общий множитель.
Этап 2.3.5.3.2.1.2
Разделим на .
Этап 2.3.5.3.3
Упростим правую часть.
Этап 2.3.5.3.3.1
Разделим на .
Этап 2.3.6
Заменим все вхождения на во всех уравнениях.
Этап 2.3.6.1
Заменим все вхождения в на .
Этап 2.3.6.2
Упростим правую часть.
Этап 2.3.6.2.1
Упростим .
Этап 2.3.6.2.1.1
Умножим на .
Этап 2.3.6.2.1.2
Вычтем из .
Этап 2.3.6.3
Заменим все вхождения в на .
Этап 2.3.6.4
Упростим правую часть.
Этап 2.3.6.4.1
Упростим .
Этап 2.3.6.4.1.1
Умножим на .
Этап 2.3.6.4.1.2
Вычтем из .
Этап 2.3.7
Перечислим все решения.
Этап 2.4
Вычислим значение , используя каждое значение в таблице и сравнивая это значение с заданным значением в таблице.
Этап 2.4.1
Вычислим значение , для которого , когда , , и .
Этап 2.4.1.1
Упростим каждый член.
Этап 2.4.1.1.1
Возведем в степень .
Этап 2.4.1.1.2
Умножим на .
Этап 2.4.1.1.3
Умножим на .
Этап 2.4.1.2
Упростим путем сложения и вычитания.
Этап 2.4.1.2.1
Вычтем из .
Этап 2.4.1.2.2
Добавим и .
Этап 2.4.2
Если для данной таблицы действует квадратичное правило функции, для соответствующего значения , . Эта проверка дает отрицательный результат, так как и . Правило функции не может быть квадратичным.
Этап 2.4.3
Поскольку для соответствующих значений , эта функция не является квадратичной.
Функция не является квадратичной.
Функция не является квадратичной.
Функция не является квадратичной.
Этап 3
Не существует значений , или в уравнениях или , которые работают для каждой пары и .
По этой таблице нельзя сделать вывод о линейности или квадратичности функции.