Алгебра Примеры

Найти интервалы, на которых функция не определена или терпит разрывы ((x^2-25)/(5x))÷((x^2-2x-15)/(4x+14))
Этап 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим на .
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1.1
Вынесем множитель из .
Этап 4.2.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1.2.1
Вынесем множитель из .
Этап 4.2.3.1.2.2
Сократим общий множитель.
Этап 4.2.3.1.2.3
Перепишем это выражение.
Этап 4.2.3.2
Вынесем знак минуса перед дробью.
Этап 5
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем числитель к нулю.
Этап 6.2
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 6.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 6.2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Приравняем к .
Этап 6.2.3.2
Добавим к обеим частям уравнения.
Этап 6.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Приравняем к .
Этап 6.2.4.2
Вычтем из обеих частей уравнения.
Этап 6.2.5
Окончательным решением являются все значения, при которых верно.
Этап 7
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 8