Алгебра Примеры

Найти пересечение с осями X и Y f(x)=2x^3+8x^2-2x-8
Этап 1
Найдем точки пересечения с осью x.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы найти точки пересечения с осью x, подставим вместо и найдем решение для .
Этап 1.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем уравнение в виде .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.1.4
Вынесем множитель из .
Этап 1.2.2.1.5
Вынесем множитель из .
Этап 1.2.2.1.6
Вынесем множитель из .
Этап 1.2.2.1.7
Вынесем множитель из .
Этап 1.2.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.2.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2.2.4
Перепишем в виде .
Этап 1.2.2.5
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.5.1
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.5.1.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2.2.5.1.2
Избавимся от ненужных скобок.
Этап 1.2.2.5.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Вычтем из обеих частей уравнения.
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Вычтем из обеих частей уравнения.
Этап 1.2.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Приравняем к .
Этап 1.2.6.2
Добавим к обеим частям уравнения.
Этап 1.2.7
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Точки пересечения с осью x в форме точки.
точки пересечения с осью x:
точки пересечения с осью x:
Этап 2
Найдем точку пересечения с осью Y.
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы найти точки пересечения с осью y, подставим вместо и найдем решение для .
Этап 2.2
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Избавимся от скобок.
Этап 2.2.2
Избавимся от скобок.
Этап 2.2.3
Избавимся от скобок.
Этап 2.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.4.1.1
Возведение в любую положительную степень дает .
Этап 2.2.4.1.2
Умножим на .
Этап 2.2.4.1.3
Возведение в любую положительную степень дает .
Этап 2.2.4.1.4
Умножим на .
Этап 2.2.4.1.5
Умножим на .
Этап 2.2.4.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.1
Добавим и .
Этап 2.2.4.2.2
Добавим и .
Этап 2.2.4.2.3
Вычтем из .
Этап 2.3
Точки пересечения с осью y в форме точки.
Точки пересечения с осью y:
Точки пересечения с осью y:
Этап 3
Перечислим пересечения.
точки пересечения с осью x:
Точки пересечения с осью y:
Этап 4