Алгебра Примеры

Найти интервалы, на которых функция не определена или терпит разрывы (3y^3-27y)/(y^2-9y+18)*(8y^2)/(3y^2-6y-45)
Этап 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Добавим к обеим частям уравнения.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Вынесем множитель из .
Этап 4.1.1.2
Вынесем множитель из .
Этап 4.1.1.3
Вынесем множитель из .
Этап 4.1.1.4
Вынесем множитель из .
Этап 4.1.1.5
Вынесем множитель из .
Этап 4.1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.1.2.2
Избавимся от ненужных скобок.
Этап 4.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Приравняем к .
Этап 4.3.2
Добавим к обеим частям уравнения.
Этап 4.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Приравняем к .
Этап 4.4.2
Вычтем из обеих частей уравнения.
Этап 4.5
Окончательным решением являются все значения, при которых верно.
Этап 5
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 6