Алгебра Примеры

Решить с помощью разложения на множители x^4-50x^2=-49
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Перепишем в виде .
Этап 3
Пусть . Подставим вместо для всех.
Этап 4
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.2
Запишем разложение на множители, используя данные целые числа.
Этап 5
Заменим все вхождения на .
Этап 6
Перепишем в виде .
Этап 7
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 8
Перепишем в виде .
Этап 9
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 9.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 9.2
Избавимся от ненужных скобок.
Этап 10
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 11
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 11.1
Приравняем к .
Этап 11.2
Вычтем из обеих частей уравнения.
Этап 12
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 12.1
Приравняем к .
Этап 12.2
Добавим к обеим частям уравнения.
Этап 13
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 13.1
Приравняем к .
Этап 13.2
Вычтем из обеих частей уравнения.
Этап 14
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 14.1
Приравняем к .
Этап 14.2
Добавим к обеим частям уравнения.
Этап 15
Окончательным решением являются все значения, при которых верно.