Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Изолируем в левой части уравнения.
Этап 1.1.1
Упростим .
Этап 1.1.1.1
Перепишем.
Этап 1.1.1.2
Упростим путем добавления нулей.
Этап 1.1.1.3
Объединим и .
Этап 1.1.2
Добавим к обеим частям уравнения.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Этап 1.2.3.2.1
Сократим общий множитель и .
Этап 1.2.3.2.1.1
Вынесем множитель из .
Этап 1.2.3.2.1.2
Сократим общие множители.
Этап 1.2.3.2.1.2.1
Сократим общий множитель.
Этап 1.2.3.2.1.2.2
Перепишем это выражение.
Этап 1.2.3.2.2
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.3.2.3
Умножим на .
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Упростим каждый член.
Этап 1.2.4.2.1.1
Возведение в любую положительную степень дает .
Этап 1.2.4.2.1.2
Объединим и .
Этап 1.2.4.2.1.3
Умножим на .
Этап 1.2.4.2.1.4
Разделим на .
Этап 1.2.4.2.1.5
Разделим на .
Этап 1.2.4.2.1.6
Умножим на .
Этап 1.2.4.2.2
Добавим и .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Приравняем к новой правой части.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Найдем вершину .
Этап 4
Этап 4.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 4.2
Подставим значение в формулу.
Этап 4.3
Упростим.
Этап 4.3.1
Объединим и .
Этап 4.3.2
Упростим выражение.
Этап 4.3.2.1
Умножим на .
Этап 4.3.2.2
Разделим на .
Этап 5
Этап 5.1
Фокус параболы можно найти, добавив к координате x , если ветви параболы направлены влево или вправо.
Этап 5.2
Подставим известные значения , и в формулу и упростим.
Этап 6