Алгебра Примеры

Определить свойства f(x)=(x-2)^2
Этап 1
Запишем в виде уравнения.
Этап 2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3
Поскольку имеет положительное значение, ветви параболы направлены вверх.
вверх
Этап 4
Найдем вершину .
Этап 5
Найдем , расстояние от вершины до фокуса.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 5.2
Подставим значение в формулу.
Этап 5.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Сократим общий множитель.
Этап 5.3.2
Перепишем это выражение.
Этап 6
Найдем фокус.
Нажмите для увеличения количества этапов...
Этап 6.1
Фокус параболы можно найти, добавив к координате y , если ветви параболы направлены вверх или вниз.
Этап 6.2
Подставим известные значения , и в формулу и упростим.
Этап 7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 8
Найдем направляющую.
Нажмите для увеличения количества этапов...
Этап 8.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием из y-координаты вершины , если ветви параболы направлены вверх или вниз.
Этап 8.2
Подставим известные значения и в формулу и упростим.
Этап 9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 10