Введите задачу...
Алгебра Примеры
(a+b)4(a+b)4
Этап 1
Используем формулу биномиального разложения, чтобы найти каждый член. Бином Ньютона имеет вид (a+b)n=n∑k=0nCk⋅(an-kbk)(a+b)n=n∑k=0nCk⋅(an−kbk).
4∑k=04!(4-k)!k!⋅(a)4-k⋅(b)k4∑k=04!(4−k)!k!⋅(a)4−k⋅(b)k
Этап 2
Развернем сумму.
4!(4-0)!0!(a)4-0⋅(b)0+4!(4-1)!1!(a)4-1⋅(b)1+4!(4-2)!2!(a)4-2⋅(b)2+4!(4-3)!3!(a)4-3⋅(b)3+4!(4-4)!4!(a)4-4⋅(b)44!(4−0)!0!(a)4−0⋅(b)0+4!(4−1)!1!(a)4−1⋅(b)1+4!(4−2)!2!(a)4−2⋅(b)2+4!(4−3)!3!(a)4−3⋅(b)3+4!(4−4)!4!(a)4−4⋅(b)4
Этап 3
Упростим экспоненты для каждого члена разложения.
1⋅(a)4⋅(b)0+4⋅(a)3⋅(b)1+6⋅(a)2⋅(b)2+4⋅(a)1⋅(b)3+1⋅(a)0⋅(b)4
Этап 4
Этап 4.1
Умножим (a)4 на 1.
(a)4⋅(b)0+4⋅(a)3⋅(b)1+6⋅(a)2⋅(b)2+4⋅(a)1⋅(b)3+1⋅(a)0⋅(b)4
Этап 4.2
Любое число в степени 0 равно 1.
a4⋅1+4⋅(a)3⋅(b)1+6⋅(a)2⋅(b)2+4⋅(a)1⋅(b)3+1⋅(a)0⋅(b)4
Этап 4.3
Умножим a4 на 1.
a4+4⋅(a)3⋅(b)1+6⋅(a)2⋅(b)2+4⋅(a)1⋅(b)3+1⋅(a)0⋅(b)4
Этап 4.4
Упростим.
a4+4a3⋅b+6⋅(a)2⋅(b)2+4⋅(a)1⋅(b)3+1⋅(a)0⋅(b)4
Этап 4.5
Упростим.
a4+4a3b+6a2b2+4⋅a⋅(b)3+1⋅(a)0⋅(b)4
Этап 4.6
Умножим (a)0 на 1.
a4+4a3b+6a2b2+4ab3+(a)0⋅(b)4
Этап 4.7
Любое число в степени 0 равно 1.
a4+4a3b+6a2b2+4ab3+1⋅(b)4
Этап 4.8
Умножим (b)4 на 1.
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4