Алгебра Примеры

Risolvere per x логарифм по основанию 5 от x+ логарифм по основанию 5 от 4x-1=1
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Упорядочим.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.2.2
Перенесем влево от .
Этап 1.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Перенесем .
Этап 1.3.1.2
Умножим на .
Этап 1.3.2
Перепишем в виде .
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Запишем как плюс
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Вычтем из обеих частей уравнения.
Этап 3.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.6.2.1
Добавим к обеим частям уравнения.
Этап 3.6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.1
Разделим каждый член на .
Этап 3.6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.6.2.2.2.1.1
Сократим общий множитель.
Этап 3.6.2.2.2.1.2
Разделим на .
Этап 3.7
Окончательным решением являются все значения, при которых верно.
Этап 4
Исключим решения, которые не делают истинным.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: