Алгебра Примеры

Определить корни (нули) 3x^5+6x^4-72x^3=0
Этап 1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.1.4
Вынесем множитель из .
Этап 1.1.5
Вынесем множитель из .
Этап 1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2
Избавимся от ненужных скобок.
Этап 2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Приравняем к .
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Перепишем в виде .
Этап 3.2.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7