Алгебра Примеры

Определить корни (нули) 2x^4-9x^2+4=0
Этап 1
Подставим в уравнение. Это упростит использование формулы для корней квадратного уравнения.
Этап 2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Запишем как плюс
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Добавим к обеим частям уравнения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Подставим вещественное значение обратно в решенное уравнение.
Этап 8
Решим первое уравнение относительно .
Этап 9
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 9.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Перепишем в виде .
Этап 9.2.2
Любой корень из равен .
Этап 9.2.3
Умножим на .
Этап 9.2.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.2.4.1
Умножим на .
Этап 9.2.4.2
Возведем в степень .
Этап 9.2.4.3
Возведем в степень .
Этап 9.2.4.4
Применим правило степени для объединения показателей.
Этап 9.2.4.5
Добавим и .
Этап 9.2.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 9.2.4.6.1
С помощью запишем в виде .
Этап 9.2.4.6.2
Применим правило степени и перемножим показатели, .
Этап 9.2.4.6.3
Объединим и .
Этап 9.2.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.2.4.6.4.1
Сократим общий множитель.
Этап 9.2.4.6.4.2
Перепишем это выражение.
Этап 9.2.4.6.5
Найдем экспоненту.
Этап 9.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 9.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 9.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 10
Решим второе уравнение относительно .
Этап 11
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 11.1
Избавимся от скобок.
Этап 11.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 11.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 11.3.1
Перепишем в виде .
Этап 11.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 11.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 11.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 11.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 11.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 12
Решением является .
Этап 13
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 14