Алгебра Примеры

Определить корни (нули) f(x)=-x^4+x^2
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Перепишем в виде .
Этап 2.1.2
Пусть . Подставим вместо для всех.
Этап 2.1.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Вынесем множитель из .
Этап 2.1.3.2
Возведем в степень .
Этап 2.1.3.3
Вынесем множитель из .
Этап 2.1.3.4
Вынесем множитель из .
Этап 2.1.4
Заменим все вхождения на .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.1
Перепишем в виде .
Этап 2.3.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.3.2.2.3
Плюс или минус равно .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Вычтем из обеих частей уравнения.
Этап 2.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1
Разделим каждый член на .
Этап 2.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.4.2.2.2.2
Разделим на .
Этап 2.4.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.3.1
Разделим на .
Этап 2.4.2.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.4.2.4
Любой корень из равен .
Этап 2.4.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.4.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.4.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.4.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3